
THEORY OF GENERALIZED THERMODYNAMIC
SYSTEMS WITH MEMORY

A. I. Shnip UDC 536.7

A theory of the generalized nonlinear thermodynamic systems with memory is developed. It is shown
how different specific physical systems can be represented in the context of a generalized formalism.
Necessary and sufficient conditions of fulfillment of the second law of thermodynamics for such non-
linear systems are found. These conditions contain, as a particular case, the previously found similar
conditions for linear systems. A procedure of constructing the nonequilibrium thermodynamic poten-
tial for such systems is developed.

1. Unification of the Representation of Different Thermodynamic Systems. In this section, it will
be shown how different specific thermodynamic systems can be represented in a universal way and, conse-
quently, be embedded in some unified formal scheme. Then, on the basis of this scheme, a generalized ab-
stract thermodynamic theory will be constructed.

The two formulations of the second law of thermodynamics (second law) most widely used in con-
temporary thermodynamics go back to two classical formulations of the nineteenth century:

(a) in each cyclic process the integral of reduced heat is nonpositive, i.e.,

� 
dQ
θ

 ≤ 0 ; (1a)

(b) for any process the inequality below is fulfilled

∫ dQ
θ

 ≤ S2 − S1 . (1b)

The thermodynamic approach based on the modern variant of formulation (1a) belonging to Clausius
is usually called the entropy-free one. If a thermodynamic system is a continuum, the integral of reduced heat
can be represented in terms of the local field formulation, and then inequalities (1) are reduced to the follow-
ing form [1–4]:

� 

− 

1
ρ

 div 


q
θ



 + 

r
θ



 dt ≤ 0 , (2a)

η (t2) − η (t1) ≥ ∫ 
t1

t2



− 

1
ρ

 div 


q
θ



 + 

r
θ



 dt . (2b)

The last inequality can be represented in the differential form (the Clausius–Duhem inequality)
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η
.
 (t) ≥ − 

1
ρ

 div 


q
θ



 + 

r
θ

 . (3)

Hereafter the dot above a symbol indicates a substantial derivative with respect to time.
We will consider several examples of thermodynamic systems for which the first law of thermody-

namics (the law of conservation of energy) is represented as follows:
(a) a nondeformable heat-conducting body

e
.
 = − 

1
ρ

 div q + r ; (4)

(b) a deformable heat-conducting body

e
.
 = − 

1
ρ

 div q + S ⋅ F
.
 + r ; (5)

(c) a nondeformable heat-conducting dielectric body with an electromagnetic field [5]

e
.
 = − 

1
ρ

 div q + 
1
ρ

 D
.
 ⋅ E + 

1
ρ

 B
.
 ⋅ H + r , (6)

where the scalar product of the tensors T1 and T2 is determined as their convolution (a trace of the product
of the tensors), i.e., T1⋅T2 = tr (T1T2).

We express r, for instance, from (5) and substitute into (2a). As a result, introducing the inverse ab-
solute temperature ϑ = 1 ⁄ θ and its gradient g = grad ϑ, we arrive at

� 

e
.
 ϑ − ϑ S ⋅ F

.
 − 

1
ρ

 q ⋅ g

 dt ≤ 0 , (7)

e
.
 ϑ  − ϑ S ⋅ F

.
 − 

1
ρ

 q ⋅ g ≤ η
.
 . (8)

Introducing a new thermodynamic potential Φ into (8)

Φ = e ϑ − η (9)

and adding the identity

� (e ϑ)
.
 dt = 0 (10)

to (7), we represent (7) and (8) in the form

� 

e ϑ
.
 + ϑ S ⋅ F

.
 + 

1
ρ

 q ⋅ g

 dt ≥ 0 , (11)

− Φ
.

 + e ϑ
.
 + ϑ S ⋅ F

.
 + 

1
ρ

 q ⋅ g ≥ 0 . (12)

We consider the space S = L(E) × E × R so that the elements of S are the triplets γ = {T, a, λ}
consisting of a tensor, a vector, and a scalar. If γ1 = {T1, a1, λ1} and γ2 = {T2, a2, λ2} are two elements from
S, then their scalar product is determined as follows:
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sγ1, γ2t = T1⋅T2 + a1⋅a2 + λ1λ2 . (13)

Then if we introduce the functions of coordinates and time

σ = 

ϑ  S, 

1
ρ

 q, e

   and   ε = 


F, g

__
, ϑ



 , (14)

where

g
__
 (t) = ∫ 

−∞

t

g (s) ds ,
(15)

then inequalities (11) and (12) can be written as

� sσ, ε
.
t dt ≥ 0 , (16)

sσ, ε
.
t ≥ Φ

.
 . (17)

Similarly, performing analogous transformations of the thermodynamic systems introduced above in
items (a) and (c), we can represent both formulations of the second law in the form of (16) and (17), where

a)  S = E × R ,   σ = 




1
ρ

 q, e

 ,   ε = g

__
, ϑ



 ; (18)

c)  S = E × E × E × R ,   σ = 




ϑ
ρ

 B, 
ϑ
ρ

 D, 
ϑ
ρ

 q, e



 ,   ε = 


H, E, g

__
, ϑ



 , (19)

here, in the last case the thermodynamic potential is

Φ = e ϑ − η − ϑ  B ⋅ H − ϑ D ⋅ E . (20)

The possibility of such a unified representation of different thermodynamic systems forms the basis
of the formalism used below.

Thus, the abstract notions, introduced below, of configuration space, configuration trajectory, and tra-
jectory of generalized forces satisfy the space S determined above, the function of time ε(t), and the function
of time σ(t) in each of the three considered particular cases, respectively. At the same time this formalism
can describe a great number of other physical systems.

For any thermodynamic theory of complex media of the type of those considered above to be closed,
it must be supplemented, in addition to the indicated relations and conservation laws, with the so-called con-
stitutive or material equations that prescribe how the dependent variables are determined in terms of the in-
dependent ones and thus determine the properties of a medium.

In all the above cases, the independent variables are grouped into the generalized variable ε (configu-
ration), while the dependent variables are grouped into the generalized variable σ (generalized force) with
account for normalization conditioned by the form of the integral of the reduced heat.

The most universal form of the constitutive equations follows from the assumption that the values of
the dependent variables at a running instant of time are determined not only by the values of the independent
variables at the running instant but also by their prehistory (the causality principle). This is the so-called
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model of the media with memory. Moreover, the assumption called the equipresence principle is also used,
according to which if some form of the dependence on the independent variables is present in one of the
constitutive equations, then this dependence must be present in all the rest, provided it is not forbidden by
some other general principles.

Here, since the concrete dependences on the prehistories represent functionals of the type of convolu-
tions, then by integration by parts they can be represented through the dependence on the prehistories of their
time derivatives (differential histories). For the sake of convenience and compactness of the basic relations
this dependence should be represented precisely in terms of the differential histories. With regard to the
aforesaid, for instance, to case (b) of the examples given above, the constitutive equations are written as

S (t) = 6
^
 (F (t), ϑ (t), F

.  t, g
__.  t, ϑ

.
 t) ,   q (t) = T^  (F (t), ϑ  (t), F

.  t, g
__.  t, ϑ

.
 t) ,

e (t) = e^ (F (t), ϑ  (t), F
.  t, g

__.  t, ϑ
.

 t) , (21)

where F
.

t(s) = 
d
dt

 F(t − s) is the differential history of the deformation gradient; other histories are determined
in the same way. In (21), S

^
, q^ , and e^ represent the ordinary functions for the first two arguments and the

functionals for the last three arguments. These relations describe a model of the viscoelastic media with ther-
mal and deformational memory proposed by Chen and Gurtin [11]. In the generalized form with account for
(14) and for the relation describing the balance of mass ρ = ρ0

 ⁄ det F (ρ0 = const), the constitutive equations
(21) can be written as follows*):

σ (t) = σ^  (ε (t), ε
.  t) , (22)

where according to (14)

σ^  = 

ϑ  6

^
,
det F
ρ0

 T^ , H^ 

   è   ε

.  t = 


F
.  t, g

__.  t, ϑ
.

 t

  .

Similar relations can be provided for the remaining two examples. In the generalized theory of the
thermodynamic systems with memory described below, the constitutive functional (more precisely the vector-
functional) of generalized forces corresponds to constitutive equations of the type (22).

2. Generalized Theory of the Thermodynamic Systems with Memory. Let S be the finite-dimen-
sional Euclidean space of elements α, β, γ, ... with scalar product s ⋅ , ⋅t and norm |⋅| = s ⋅ , ⋅t

1⁄2, which will
be called the configuration space, and R and R+ be sets of real numbers and of the nonnegative reals, respec-
tively.

The function of time ε: R → S, called the configuration trajectory of a system, is a bounded on each
interval, continuous function with its derivative bounded on finite intervals, and for which there exists t0 such
that ε(t) = ε0 for all t ≤ t0 (ε0 is the fixed element from S). If the instant of time t0 referred to in this defini-
tion is to be emphasized, we say the "configuration trajectory starting from the instant of time t0."

The configuration history of a system before an instant of time t is a function determined as

εt (s) = ε (t − s) . (23)

The differential configuration history before the instant t is a function ε
. t: R+ → S:

ε
.  t (s) = 

d
dt

 εt (s) = − 
d
ds

 ε (t − s) . (24)

∗)  Relations (22) are slightly more general with respect to (21), since in (21) the dependence on one of the
vector "components" of ε(t), percisely, on g

_
(t), is absent.
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The Hilbert space H of piecewise-continuous bounded functions f: R+ → S with a compact carrier
and a finite norm

NfN = 






∫ 
0

∞

 f (s) 2 ξ (s) ds







1 ⁄ 2

(25)

will be called the space of histories. In (25), ξ is the influence function. It is assumed to be positive continu-
ous, integrable on R+, nowhere vanishing, and possessing the property

   lim
s→∞

  
ξ (s)

ξ (s + T)
 < ∞ . (26)

The state Λ is a pair Λ = {α, f} where α 2 S and f 2 H, and the set of all such pairs with norm
N⋅NG 

NΛNG = ( α 2 + Nf�
2)1

 ⁄ 2 (27)

forms the space of states G.
For the prescribed configuration trajectory ε(⋅) and an arbitrary instant of time t, the state of the sys-

tem at the instant t is determined as

Λt = 


 ε (t), ε

.  t

  . (28)

The equilibrium state is

Λ+ = 


 α, 0+



  , (29)

where α 2 S, 0+ 2 H, and 0+(s) = 0 for all s 2 R.
To the constitutive equations the notion of the constitutive functional of generalized forces σ^ :

G → S corresponds:

σ^  (Λ) = σ^  (α, f) . (30)

The functional σ^  is assumed to be continuous on G and bounded at any limited values of arguments.
For any configuration trajectory of a system one can unambiguously determine the trajectory of gen-

eralized forces σε: R → S with the aid of functional (30):

σε
^  (t) = σ^  (Λt) = σ^  (ε (t), ε

.  t) . (31)

The thermodynamic trajectory is a pair {ε(t), σε(t)} consisting of a configuration trajectory and a tra-
jectory of generalized forces σε: R → S corresponding to it.

The process with a duration of T(T > 0) is a function h: (0, T] → S, which is bounded and piecewise
continuous and with which the transformation Ph

T: G → G is associated in the space of states, which is deter-
mined as follows: for any Λ = {α, f} 2 G

Ph
TΛ B Λ(h) = 




α(h), ph

T f



 , (32)

where
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α(h) = α + hi (T) , (33)

hi (t) = ∫ 
0

t

h (s) ds , (34)

while a transformation ph
T in the space of histories is determined as

ph
T f (s) = 











f (s − T)

h (T − s)
     

for  s 2 [T, ∞) ,

for  s 2 [0, T) ,
(35)

Ph
T is called the transformation of states, which is induced by a process h. We say the process h transfers the

system from the initial state Λ to the final state Ph
TΛ.

We denote by P and PT, respectively, the set of all processes and the set of processes with a dura-
tion of T. The process uT such that uT(s) = 0 for all ε 2 (0, T) is called the fixed process with a duration of
T.

It is easy to verify that the transformation Ph
T associated with the process h takes the state of a system

at the instant t Λt = {ε(t), εt}, corresponding to the configuration trajectory ε(τ), to the state of the system at
the instant t + T, corresponding to the configuration trajectory ε(ht)(τ), which is determined on (−∞, t + T) in
the following way:

ε(ht) (τ) = 











ε (τ)

ε (t) + hi (τ − t)
     

for  τ ≤ t ,

for  τ 2 (t, T + t] .
(36)

The configuration trajectory ε(ht)(τ) is called an h-extension of the trajectory ε(τ) for the instant t.
It can be shown that by the assumptions made above for any process h the transformation Ph

T associ-
ated with the latter is continuous in G.

The composition of processes h1 with a duration of T1 and of h2 with a duration of T2 represents a
process h1 ° h2 with a duration of T1 + T2 determined as follows:

h1 ° h2 = 











h1 (τ)

h2 (τ − T1)
     

for  τ 2 (0, T1] ,

for  τ 2 (T1, T1 + T2) .
(37)

It is easy to check that

Ph1°h2

T1+T2Λ = Ph2

T2Ph1

T1Λ . (38)

We can also determine for any t ≤ T the reduction of a process with a duration of T to the interval
(0, t) by narrowing the domain of definition of the process h on (0, t). This will be the process with a dura-
tion of t. Correspondingly, the transformation Ph

t  associated with it will be determined. All of the foregoing
relative to the transformation Ph

t  in the space of states is valid for the transformation ph
t  in the space of his-

tories.
For formulation of the second law we introduce a generalized analog of the integral of reduced heat.
The action (or thermodynamic action) performed by the process h with a duration of T from state Λ

is a function a: G × P → R, which is determined in the following way:
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a (Λ, h) = ∫ 
0

T

sσ^  (Ph
tΛ), h (t)� dt , (39)

where Ph
t  is the transformation associated with reduction of the process h to the interval (0, t). It is obvious

that the action is continuous in G at fixed h and, moreover, it is additive on the composition of two processes
h1 and h2 with a duration of T1 and T2, respectively, in the sense that

a (Λ, h1 ° h2) = a (Λ, h1) + a (Ph1

T1Λ, h2) = ∫ 
0

T1

sσ^  (Ph2

τ
Λ), h1 (τ)t dτ + ∫ 

0

T2

�σ^  (Ph2

τ
 Ph1

T1Λ), h2 (τ)t dτ . (40)

All the notions and definitions formulated above represent a more concrete realization of the abstract
mathematical theory of thermodynamic systems developed by Coleman and Owen [6, 7], so that the basic
notions and postulates of both theories show a certain distinct correspondence.

Now we pass to formulation of the thermodynamic theory.
A postulate expressing the second law in the manner of the Coleman–Owen theory [16] is formulated

as follows:
P1. At any initial state Λ 2 G the action a possesses the following property: for any ζ > 0 there

exists δ > 0 such that if h 2 PT and

NΛ − Ph
TΛNG < δ , (41)

then

a (Λ, h) > − ζ . (42)

Nonstrictly speaking, this postulate indicates that if some process drives a system into a sufficiently
small neighborhood of the initial state, then the action performed in this process will be nonnegative with an
accuracy as high as desired. This statement represents a generalization and strict mathematical formalization
of the formulation of the second law used in classical thermodynamics in the form of the requirement on
nonnegativeness for the integral of reduced heat in any cyclic process (1a).

The main corollary of the second law is existence of the thermodynamic potential and fulfillment of
the Clausius–Duhem inequality, which is the content of the next theorem (this is an analog of Theorem 3.3
in [6] for the considered class of thermodynamic systems).

T h e o r e m  1. The postulate P1 is fulfilled if and only if the function of state ψ
.
: G → R (thermo-

dynamic potential) exists that is definite and lower semicontinuous on G and possesses the following prop-
erty: for any Λ1, Λ2 2 G and for any ζ > 0 there exists δ > 0 such that the inequality

ψ^  (Λ2) − ψ^  (Λ1) < a  (Λ1, h) + ζ (43)

is fulfilled for any h 2 P such that N Ph
TΛ1 − Λ2NG < δ.

The theorem is proved on the basis of arguments similar to those used in [6]. The lower semicon-
tinuity of the potential ψ^  in state Λ implies that for any ζ > 0 there exists δ > 0 such that for any Λ′ 2 G
such that

NΛ − Λ′
NG < δ , (44)

the following inequality holds:
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ψ^  (Λ) − ψ^  (Λ′) < − ζ . (45)

Theorem 1 is of fundamental significance since it demonstrates the interrelation between the formula-
tions of the second law in the form of (1a) and (1b) and makes it possible to consider the nonequilibrium
thermodynamic potential as a notion derived from theory.

3. Conditions of the Thermodynamic Validity of the Nonlinear Thermodynamic Systems with
Memory. An important problem is to find conditions which the constitutive equations must satisfy in order
to fulfill the second law.

To attain this aim, we slightly narrow the class of systems considered and confine ourselves to con-
sideration of nonlinear constitutive equations of the form (30) possessing the following property:

∂α (σ^  (α, f) − σ^  (α, 0+)) = 0 . .(46)

Hereafter a differential operator ∂α is the operator of differentiation (of taking a gradient) in the space
S. Introducing the equilibrium function of generalized forces σ0: S → S as

σ0 (α) = σ^  (α, 0+) , (47)

it is easy to verify that condition (46) is equivalent to the statement about the possibility of representing the
functional σ^ (α, f) in the form

σ^  (α, f ) = σ0 (α) + σ^  ′ (f) , (48)

where the functional σ^ ′ is determined as

σ^  ′ (f) = σ^  (α, f ) − σ^  (α, 0+) (49)

and, according to (46), is independent of α, but by definition (49) it is continuous and possesses the property

σ^  ′ (0+) = 0 . (50)

Thermodynamic systems with constitutive equations possessing this property will be referred to as
separable ones, and from this point on we consider only such systems.

Our main result here is the following theorem that contains the already mentioned necessary and suf-
ficient conditions of fulfillment of the second law of thermodynamics for the separable thermodynamic sys-
tems.

T h e o r e m  2. The postulate P1 for separable thermodynamic systems is fulfilled if and only if a
continuously differentiable function ψ0: S → R exists such that

σ0 (α) = ∂α ψ0 (α) , (51)

and the functional σ^ ′ satisfies the following inequality:

 ∫ 
0

T

sσ^  ′ (Ph
t 0+), h (t)t dt ≥ 0 (52)

for any h 2 P.
By the formulation of the theorem, condition (52) can be represented in the more "transparent" form
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 ∫ 
0

T

sσ^  ′ (ht), h (t)t dt ≥ 0 (53)

for any piecewise-continuous, locally summable functions h: R → S with a carrier on the positive semiaxis
and for any T > 0; here ht(s) = h(t − s).

P r o o f. Necessity. We show that (51) follows from fulfillment of the postulate P1. We consider a
process h with a duration of T such that (see (34))

hi (T) = 0 , (54)

and in other respects it is arbitrary. We denote by hλ a process with duration T ⁄ λ, which for any λ > 0 is
determined in terms of h as follows:

hλ (s) = λh (λs) . (55)

In [9] it is shown that for any δ > 0 and for any equilibrium state Λ0
+ = {ε0, 0+} there exists λ0 > 0

such that for all λ < λ0 the following inequality is fulfilled:

NΛ0
+ − Phλ

T ⁄ λΛ0
+
NG < δ . (56)

Whence, by the assumption on fulfillment of the postulate P1 it follows that for any ζ > 0 there exists
λ0 > 0 such that for any equilibrium state Λ0

+ and the process hλ (determined above) for all λ < λ0 the follow-
ing inequality holds:

a (Λ0
+, hλ) > − ζ . (57)

This inequality can be represented in the form

 ∫ 
0

T

sσ0 (hi (τ) + ε0), h (τ)t dτ + ∫ 
0

T

�σ^  ′ (phλ

t ⁄ λ 0+), h (τ)t dτ > − ζ , (58)

where hi is determined in terms of h according to (34), while the transformation ph
t  is determined according

to (35).
From statement (56) it follows that Nphλ

t 0+N → 0 at λ → 0; therefore, on performing this limiting tran-
sition in (56), the last integral vanishes by virtue of the continuity and property (50) of the functional σ^ ′ and
(58) reduces to the inequality

 ∫ 
0

T

�σ0 (h
i (τ) + ε0), h

.  i (τ) dτt ≥ 0 ,
(59)

which must be satisfied for any ε0, any T > 0, and any hi such that hi(0) = hi(T) = 0. After substitution of
hi(T − s) for hi(s) and some transformations with replacement of the variable in the integral we arrive at the
same inequality with a reciprocal sign. Whence it follows that

 ∫ 
0

T

�σ0 (h
i (τ) + ε0), h

i (τ) dτt = 0 (60)
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for any hi which satisfy (54). As is known (the proof can be found, for instance, in [4]), this is equivalent to
be requirement that σ0 be determined as a gradient of some scalar function ψ0, i.e., by relation (51).

Now we prove that condition (52) originates from P1. We consider P1 to be realizable and for an
arbitrary equilibrium state Λ0

+ = {ε0, 0+} consider a process h0 with a duration of T0 = T + 2T1 which is the
composition of an arbitrary process h with a duration of T1, of a fixed process uT1

 with duration T1, and of
a process h1 with a duration of T1. Here h1 has the specific form

h1 (s) = − 
1
T1

 hi (T) = const , (61)

where use is made of the notation of (34). Thus

h0 = h ° uT1
 ° h1 (62)

and it is easy to verify that

h0
i  (T0) = 0 . (63)

Next, we consider a process h3 with a duration of T3 = T0 + Tf that represents the composition of the
process h0 determined above and of the fixed process uTf

 with a duration of Tf :

h3 = h0 ° uTf
 . (64)

In [8–10], the following statement is proved: for any δ > 0, any process h0 2 P, and any arbitrary
equilibrium state Λ0

+ = {ε0, 0+}, there exists Tf > 0 such that for any Tf ≥ T
~

f in the process h3 the following
inequality is fulfilled:

NΛ0
+ − Ph3

T3Λ0
+
NG < δ . (65)

By virtue of the assumption on the realizability of the postulate P1, it appears that for any ζ > 0 the period
Tf in h3 can be chosen as large as to allow fulfillment of the inequality

a (Λ0
+, h3) > − ζ . (66)

We represent the left-hand side of this inequality in a more detailed form with due regard for the definition
of action (39) and for the structure of the process under consideration:

 ∫ 
0

T0

sσ0 (h0
i  (t) + ε0), h

.
0
 i (t)t dt + ∫ 

0

T

sσ^  ′ (ht), h (t)� dt − 
1
T1

   ∫ 
T+T1

T+2T1

  sσ^  ′ (h0
t ), hi (T)t dt > − ζ . (67)

We transform the first integral in this inequality considering the fact that by virtue of the fulfillment of pos-
tulate P1, as has been proved, (51) is fulfilled and in the latter we change the variable:

 ∫ 
0

T0

s∂α ψ0 (h0
i  (t) + ε0), h

.
0
 i (t)t dt + ∫ 

0

T

sσ^  ′ (hi), h (t)t dt − 
1
T1

  ∫ 
0

T1

 sσ^  ′ (h0
t+T+T1), hi (T)t dt > − ζ . (68)

For the norm of the history h0
t+T+T1 with account for definition (25) it is easy to construct the following esti-

mate:
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Nh0
t+T+T1N

2 = ∫ 
0

t 



hi (T)
T1





2

 ξ (s) ds +   ∫ 
t+T1

t+T+T1

  

h (t + T + T1 − s)


2
 ξ (s) ds ≤ ξ (0) h

i (T)
2
 

t

T1
2 +

+ ξ (t + T1) ∫ 
0

T

(h (s))
2
 ds . (69)

Whence we obtain that for any t 2 [0, T1]

  lim
T1→∞

  Nh0
t+T+T1N

2 = 0 . (70)

Then in (68) calculation of the first integral yields ψ0(ε0 + h0
i (T0)) − ψ0(ε0) and by virtue of (63) it vanishes,

but as a consequence of the limiting transition T1 → ∞, with account for (70), for the continuity, and for
property (50) of the functional σ^ ′ we draw the conclusion that the last integral vanishes as well. As a result,
(68) reduces to the proved inequality (53).

Sufficiency. Now let statements (51) and (52) (or (53)) of Theorem 2 be fulfilled. We will show that
fulfillment of the postulate P1 follows. We choose an arbitrary configuration trajectory starting from an in-
stant of time t0 and for the state on this trajectory at the instant t > t0 we consider an arbitrary process h. On
h-extension of the trajectory ε(τ) at the instant t we calculate the following integral:

   ∫ 
t0

t+T

 �σ^  ′ (ε
.
(ht)
 τ ), ε

.
(ht) (τ)t dτ � ∫ 

−∞

t

sσ^  ′ (ε
.  τ), ε

.
 (τ)t dτ + ∫ 

0

T

sσ^  ′ (ph
τ ε
.  t), h (τ)t dτ . (71)

Here, on the right-hand side the lower limit of integration is replaced by −∞ since the function ε
.
(τ) = 0 for

all τ < τ0.
We introduce the notation

h
~
 (τ) = ε

.
(ht) (τ − t0) ,   τ ≥ 0 ;   T

~
 = t + T − t0 . (72)

In terms of this notation the integral on the left-hand side of (71) acquires the form

 ∫ 
0

T
~

sσ^  ′ (h
~ τ), h

~
 (τ)t dτ ≥ 0 (73)

and is nonnegative by requirement (53), which is fulfilled according to the assumption. Then from (71) with
account for (73) we have

  ∫ 
−∞

t

sσ^  ′ (ε
.  τ), ε

.
 (τ)t dτ ≥ − ∫ 

0

T

sσ^  ′ (ph
τ ε
.  t), h (τ)t dτ . (74)

The expression on the left-hand side of this inequality is independent of h; therefore, the integral on its right-
hand side is limited from above if h runs through the set of all processes P. Consequently, on this set its
least upper bound H

^
 exists, which depends on ε

.t, i.e., is a functional on H:
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+

^
 (ε
.  t) =  sup

h2P

T>0

  









− ∫ 

0

T

sσ^  ′ (ph
τ ε
.  t), h (τ)t dτ










 . (75)

Since the fixed process u(s) ≡ 0, in which the integral in (72) vanishes, belongs to P, it is obvious that for
any f 2 H

+

^
 (f ) ≥ 0 . (76)

If we assume that in (74) ε
. t = 0+, then from the obtained inequality it immediately follows that H

^
(0+) ≤ 0,

which together with (76) yields

+

^
 (0+) = 0 . (77)

Since inequality (74) is fulfilled for any h in the last integral, it is also fulfilled if this integral is replaced by
its smallest supremum (75):

  ∫ 
−∞

t

sσ^  ′ (ε
.  τ), ε

.
 (τ)t dτ ≥ +

^
 (ε
.  τ) , (78)

and by definition (75) we have

 ∫ 
0

T

sσ^  ′ (ph
τ ε
.  t), h (τ)� dτ ≤ +

^
 (ε
.  t) . (79)

Using the fact that h is arbitrary in (79), we write this inequality for a process h
^
 = h ° h1 representing the

composition of two arbitrary processes h and h1 with a duration of T and of T1, respectively:

 ∫ 
0

T

sσ^  ′ (ph
τ ε
.  t), h (τ)� dτ − ∫ 

0

T1

sσ^  ′ (ph1

τ  (ph
T ε
.  t)), h (τ)t dτ ≤ +

^
 (ε
.  t) . (80)

If we vary h1 in this inequality, then only the second integral in (80) changes; the inequality itself is retained.
This means the inequality is also retained if this integral is replaced by the least upper bound determined by
(75):

 ∫ 
0

T

sσ^  ′ (ph
τ ε
.  t), h (τ)� dτ ≥ +

^
 (ph

T ε
.  t) − +

^
 (ε
.  t) . (81)

Since the configuration trajectory was arbitrary, this inequality is valid if an arbitrary history f is substituted
for ε

. t. We calculate the thermodynamic action performed by an arbitrary process h with a duration of T from
an arbitrary initial state Λ = {α, f}. By definition (39) and constitutive equation (48) we have

a (Λ, h) = ∫ 
0

T

�σ0 (h
i (t) + α), h

.  i (t)t dt + ∫ 
0

T

sσ^  ′ (ht), h (t) t dt . (82)
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Calculating here the first integral with account for condition (51), which is fulfilled by assumption, by virtue
of inequality (81) we obtain

a (Λ, h) ≥ +
^

 (ph
T f ) + ψ0 (hi (T ) + α) − (+

^
 (f ) + ψ0 (α)) B ψ^  (hi (T ) + α, ph

T f ) − ψ^  (α, f ) =

= ψ^  (Ph
TΛ) − ψ^  (Λ) , (83)

where the following notation is introduced:

ψ^  (α, f ) = +
^

 (f ) + ψ0 (α) . (84)

From relation (83) follows inequality (43) provided that the thermodynamic potential ψ^  determined by (84) is
lower semicontinuous. To complete the proof of the theorem, we must to show that the potential ψ^  deter-
mined by (84) possesses this property. Then from (83) by virtue of Theorem 1 the fulfillment of the postulate
P1 follows and the proof of sufficiency is completed. Since the equilibrium part of the potential ψ0 is con-
tinuous in structure, it is required to demonstrate only the lower semicontinuity of the functional H

^
 in the

space of histories H, i.e., in accordance with (44) and (45) to show that the functional H
^
 possesses the

following property: for each history f 2 H and any ζ > 0 there exists δ > 0 such that for all histories f1
satisfying the condition

Nf − f1N < δ , (85)

the inequality

+

^
 (f ) < +

^
 (f1) − ζ (86)

is fulfilled. In order to prove this, it should be shown, as follows from the definition of supremum (75), that
for each history f 2 H and any ξ > 0 there exists δ > 0 such that for all histories f1 satisfying condition (85)
there exists a process hζ such that







+

^
 (f ) + ∫ 

0

T0

sσ^  ′ (phζ

τ  f1), hζ (τ)t dτ






 < ζ . (87)

Otherwise, we will prove that the integral whose least supremum is H
^

(f1) can approximate H
^
(f) with an arbi-

trary accuracy ζ. This means that H
^

(f1), with an accuracy up to ζ, is no less than H
^

(f), and this is equivalent
to (86). We write the left-hand side of the inequality in (87) in the following form:







+

^
 (f ) + ∫ 

0

T0

sσ^  ′ (phζ

τ  f ), hζ (τ)t dτ + ∫ 
0

T0

s

σ^  ′ (phζ

τ  f1) − σ^  ′ (phζ

τ  f )

 ,  hζ (τ)tdτ







 ≤

≤ 






+
^

 (f ) + ∫ 
0

T0

sσ^  ′ (phζ

τ  f ), hζ (τ)t dτ






 + ∫ 

0

T0







�σ^  ′ (phζ

τ  f1) − σ^  ′ (phζ

τ  f )




 

hζ (τ)

 dτ . (88)

By the definition of functional H
^

 (75), for any ζ > 0 in the last expression there can be found T0 > 0 and
hζ 2 �T0

 such that the first module on the right-hand side of (88) will be smaller than ζ ⁄ 2 and in the last
term, by virtue of the continuity of the functional σ^  and of the continuity of the transformation phζ induced
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by a process hζ, there exists δ > 0 such that for all histories f1 satisfying condition (85) this term will be
smaller than ζ ⁄ 2. Whence fulfillment of (87) and, consequently, of (86) follows. The theorem is proved.

It is easy to show that the previously established necessary and sufficient conditions of fulfillment of
the second law for linear thermodynamic systems [9] are a special case of this result.

It should be noted that the method of proof here is substantially easier than in [9]; at the same time
it is constructive, i.e., contains a procedure of constructing the nonequilibrium thermodynamic potential. Com-
paring this procedure with the theory of thermodynamic potentials in the linear case [10] one can make sure
of the fact that this is the potential corresponding to the so-called minimum potential. As in the linear case,
here ambiguity of the nonequilibrium thermodynamic potentials might be expected, i.e., the presence of a
whole family of such potentials, and, thus, here one comes across the problem of investigation of this family
and the problem of the presence of an element with specific properties, which corresponds to the classical
nonequilibrium potential.

Thus, in the present work necessary and sufficient conditions for fulfillment of the second law of
thermodynamics (and consequently, also for existence of the nonequilibrium thermodynamic potential) for
nonlinear thermodynamic systems with memory are obtained. The first of these conditions requires that the
equilibrium component of generalized force be expressed as a configuration gradient of some scalar function
ψ0. The second of these conditions contains an integral similar to thermodynamic action (42), in which the
expression σ − σ0 in place of σ and the nonequilibrium part of the generalized force in place of generalized
force are used. Such an integral is referred to as the nonequilibrium part of the thermodynamic action. Then
the second of the mentioned necessary and sufficient conditions can be represented as the requirement on the
property of having a fixed sign for the nonequilibrium part of the thermodynamic action in any process start-
ing from equilibrium. This condition can be interpreted as the requirement on passivity for some accompany-
ing dynamic system which allows one to use thereafter the formalism of the theory of dynamic systems for
constructing the nonequilibrium thermodynamic potential.

There results are obtained within the framework of the theory of generalized thermodynamic systems
with memory, which can represent extensive classes of specific physical systems. Several examples of such
systems are given in Section 1. In particular, if the first of these examples (item a) is chosen, then the ob-
tained necessary and sufficient conditions of thermodynamic validity represent a complete set of thermody-
namic restrictions for the general theory of heat conduction with the final velocity of propagation of thermal
disturbances. As a simple specific case, this theory contains a hyperbolic equation of heat conduction compat-
ible with the thermodynamic restrictions. These results make it possible to construct nonlinear generalizations
of the hyperbolic equation which are compatible with thermodynamics.

This work was carried out with financial support from the Belarusian Republic Foundation for Basic
Research (project F99R-153).

NOTATION

Q, heat obtained by the system by the actual time; θ, absolute temperature; S1 and S2, entropy of the
system in the initial and final state, respectively; ρ, density of the medium; q, heat flux; r, internal heat
release per unit mass; η, specific entropy; e, specific internal energy; t, t0, t1, t2, and τ, time and instants of
time; S, tensor of the Piola–Kirchhoff stresses; F, tensor of the deformation gradient; E and H, intensity of
the electric and magnetic field, respectively; D and B, electric and magnetic induction, respectively; T, T1,
and T2, arbitrary tensors of the second rank; ϑ, inverse absolute temperature; g, gradient of the inverse tem-
perature; Φ, thermodynamic potential; S, configuration space; E, three-dimensional Euclidean space; L(E),
space of three-dimensional tensors of the second rank; R, set of real numbers; a, a1, and a2, arbitrary vectors;
λ, λ1, λ2, ζ, δ, arbitrary scalars; α, β, γ, γ1, γ2, ε0, elements of the configuration space; s⋅ , ⋅t, scalar product
in the configuration space; σ, generalized force, the trajectory of generalized forces; ε, generalized configura-
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tion, the configuration trajectory; g
_
, integral gradient of the inverse temperature; s, past, relative to present,

instants of time; S
^
, q^ , and e^, constitutive functionals of the Piola–Kirchhoff stresses, the heat flux, and the

specific internal energy, respectively; F
.

t, g
_. t, and ϑ

. t, differential histories of the deformation gradient, of the
integral gradient of inverse temperature, and of temperature, respectively; ρ0, density in the reference configu-
ration; σ^ , constitutive functional of generalized forces; ε

.t, differential configuration history before instant t on
the configuration trajectory ε; R+, set of real nonnegative numbers; εt, configuration history before the instant
of time on the configuration trajectory ε; H, Hilbert space of histories; f, arbitrary element from H (his-
tory); N⋅N, norm in H; ξ, influence function; T, T0, T1, T2, T

~
, Tf, T

~
f, time fragments; Λ, Λ1, Λ2, Λ′, arbitrary

states; G, space of states; N⋅NG, norm in the space of states; Λt, state of the system at instant t; Λ+ and Λ0
+,

equilibrium states; 0+, equilibrium history; σε, trajectory of generalized forces corresponding to the configura-
tion trajectory ε; h, hλ, h0, h1, h2, h3, h

~
, processes; Ph

T, transformation in the space of states associated with
the process h with a duration of T; Λ(h), final state into which the process h drives the state Λ; hi, integral
process; ph

T, transformation in space of histories associated with the process h with a duration of T; P and
PT, set of all processes and set of the processes with a duration of T, respectively; uT, fixed process with a
duration of T; ε(ht), h-extension of the trajectory ε for the instant of time t; h1 ° h2, composition of the proc-
esses h1 and h2; a, thermodynamic action; Ph

t , transformation associated with reduction of the process h to
interval (0, t); ψ^ , generalized thermodynamic potential; ∂α, operator of differentiation (of taking a gradient) in
space S; σ0, equilibrium function of generalized forces; σ^ ′, nonequilibrium part of the functional of general-
ized forces; ψ0, equilibrium thermodynamic potential; ht, element of the space of histories which is deter-
mined for any process h and time t > 0 as ht(s) = h(t − s) in the assumption that h is supplemented with zeros
for the negative arguments; H

^
, functional determined in (75) (the nonequilibrium part of the thermodynamic

potential).
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